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Background: In 2017, the World Health Organization (WHO) issued a global alert
identifying 12 bacteria in urgent need of new treatments.
Main body: This study assesses the scientific community’s response to this alert
by analyzing original research publications using LLMzCor, an AI-based tool
developed and validated by our group. To compare trends, we focused on
publications from 5 years before and after the alert, specifically on three
bacteria listed in the WHO alert, sorted by priority level: Acinetobacter
baumannii (Critical), Shigella spp (High), and Neisseria gonorrhoeae (Medium)
and three non-listed as controls (Rickettsia spp., C. trachomatis, and C. difficile).
Articles were classified into three categories: (i) identification of Resistant strains,
(ii) development of New treatments, and (iii) Immunization strategies.
Results: Although overall publications increased after the WHO alert, no
statistically significant changes were found in the reports of Resistant strains
over time. The development of New treatments for the listed bacteria showed a
slight increase, between 2% and 10%. Furthermore, Immunization strategies
remained relatively unchanged, with less than 2%. Meanwhile, LLMzCor
demonstrated robust performance across categories, F1-scores ranging from
0.65 to 0.72 in key classifications, while recall peaked at 0.75, indicating a high
capacity to identify relevant articles. These results support the model’s reliability
for large-scale automated classification of scientific abstracts.
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Conclusion: These findings, supported by LLMzCor, underscore the urgency of a
stronger WHO alert and action plans to develop new strategies against bacterial
resistance.
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1 Introduction

Antimicrobial resistance (AMR) is an important global health
problem that demands urgent solutions. Infectious diseases remain
one of the leading causes of death worldwide, with substantial
implications for public health and the global economy. Recent
studies estimated that nearly 5 million deaths in 2021 were
associated with bacterial AMR, and over 1 million were directly
attributable to it. Projections suggest that these numbers could
double by 2050 (Naghavi et al., 2024).

Antibiotics are the main therapeutic intervention for the
treatment of infections of bacterial origin. The first antibiotic was
discovered in 1910, and the field experienced a “golden age” of
antibiotic discovery between the 1940s and 1970s. However, in
recent decades, the widespread misuse and overuse of antibiotics
in human medicine, agriculture, livestock, and pet care have fueled
the emergence and spread of resistant bacterial strains. Since the
1940s, humans have been contributing to the increase in resistant
strains in all environments, due to the uncontrolled release of
antibiotics from clinics into nature, in addition to their
widespread use in agriculture, livestock, and house pets (Davies
and Davies, 2010).

Bacteria can develop resistance through several mechanisms,
primarily via spontaneous mutations during DNA replication and
followed by the selection of drug-insensitive mutants that spread
vertically, or via horizontal gene transfer between bacteria. This
phenomenon, known as antibiotic resistance (AR), allows bacteria to
survive and thrive despite antimicrobial treatment. The declining
efficacy of antibiotics has triggered multiple international warnings
(Diallo et al., 2020; Laxminarayan et al., 2013; McEwen and
Collignon, 2018).

In order to discover new and effective treatments for the
multiresistant bacteria, researchers are addressing their efforts in
several directions (Cook and Wright, 2022; Durand et al., 2019;
Wohlleben et al., 2016), not only the traditional antibiotics, but also
new approaches (León-Buitimea et al., 2020). The more important
categories are I- Antibodies, where the monoclonal antibodies lead
the way, and the FDA has already approved more than
100 antibodies for medical treatments (Mullard, 2021). II-
Antimicrobial Peptides (AMP), small peptides (i.e., less than
100 amino acids), some produced naturally from the three
domains of life, and also engineered derivatives of AMPs that
inhibit microbial growth by disrupting the bacterial cell
membrane (Ji et al., 2024). III- Antivirulence strategy. The key
to this strategy is to reduce the virulence of pathogenic bacteria by
inhibiting their virulence factors (such as toxins, adhesion proteins,
quorum-sensing regulators, and extracellular enzymes) rather than
killing the pathogen. This allows the immune system to clear the
infection in a more effective way (Iskandar et al., 2022). IV-
Bacteriophages. These microorganisms are viruses that
specifically infect bacteria. They are known as molecular biology

tools, and they were used as antibacterial agents soon after their
discovery, but were quickly superseded by antibiotics. However, they
have re-emerged as a potential treatment strategy in the last few
years, and have been successfully used against Salmonella spp. and
Shigella spp. among others (Połaska et al., 2019). V- Combination
strategies. The use of adjuvants or the combination of different
antibiotics is also a useful tool. Adjuvants are designed to inhibit the
intrinsic resistance mechanisms by which bacteria evade antibiotics.
In addition, combinations of different antibiotics can have a
synergistic effect, i.e., they are more effective in combination than
each antibiotic used individually (Ejim et al., 2011). VI- Natural
Products (NP). The beginnings of the antibiotic era and most of the
antibiotics currently in use are derived from natural products,
mainly from bacteria, fungi, and plants. Specifically, plants have
been used in various cultures as part of traditional medicine to treat
diseases. In recent decades, they have come back into focus, using
either plant extracts, essential oils, purified bioactive molecules, or
even in vitro production of secondary metabolites (Quintero et al.,
2022; Vallejo et al., 2023).

To guide and encourage the research and development of new
antibiotics, the World Health Organization (WHO) issued an alert
in 2017, identifying 12 bacteria grouped into three priority
categories: Critical, High, and Medium (World Health
Organization, 2017). The list was composed as follows: Critical
priority for Acinetobacter baumannii and P. aeruginosa, High
priority for S. aureus, E. faecium, H. pylori, Campylobacter spp,
Salmonellae, and Neisseria gonorrhoeae, and Medium priority for S.
pneumoniae, H. influenzae, and Shigella spp.

In 2024, a second alert was released, regrettably listing almost
the same set of bacterial species (World Health Organization, 2024).
This lack of progress raises concerns about whether the first alert had
a meaningful impact on the scientific community. Despite
considerable efforts to discover new antimicrobials, the
adaptability of bacterial genomes and their rapid mutation rates
allow these pathogens to “outpace” our research efforts, making it
difficult to find a safe and effective solution.

A comprehensive review of the scientific literature is essential to
evaluate progress in AMR research and antimicrobial development.
However, manual screening of large databases is time-consuming,
subject to bias, and requires extensive training and logistical
planning (Cumpston et al., 2019). To address these limitations,
Large Language Models (LLMs), like LLaMA, Claude, or ChatGPT,
have emerged as powerful tools that can be used for automating
literature screening, classification, and information extraction in
academic and clinical domains (Galli et al., 2025).

Regarding relevant medical information, the automatic
selection, especially for real-time decision-making in clinical
practice and also in critical contexts like epidemic outbreaks, can
be very beneficial in terms of time saving. Medical doctors currently
spend almost 50% of their time in recording and documenting
clinical procedures (Galli et al., 2025; Mustafa et al., 2025). In this
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sense, AI-based tools, like srBERT (Aum and Choe, 2021;
MediSearch (2025); Glass Health (2025)), among other LLMs to
improve medical documentation review have been developed for
that purpose.

GPT-4 is one of the most popular LLMs, which can make
classifications based on the article summaries, through prompts
or well-structured queries specifying inclusion and exclusion
criteria. Several reports confirm the successful use of OpenAI in
Systematic Reviews (SR) and meta-analyses, with matching results
compared to experienced human coders over 80% (Mustafa et al.,
2025) and revealing it as one of the most consistent performers
(Delgado-Chaves et al., 2025). Nevertheless, an optimized repeated
validation of the LLM, sometimes missing or deficient in certain
models (Lieberum et al., 2025), is strongly recommended, focusing
on prompt readjustment to achieve a higher accuracy (Delgado-
Chaves et al., 2025).

Bacterial resistance has been studied from different approaches
through the use of AI tools such as Machine Learning (ML), Deep
Learning (DL), non-linear DL, Transference Learning (TL), to
identify and classify Antimicrobial Resistance (AR) genes, as
suggested by different authors. Nayak et al. (2024) designed and
validated aiGeneR 1.0, a non-linear DL model for genomic data
processing with high accuracy performance, detecting the
Escherichia coli resistant genes causing the decrease in antibiotic
efficiency through horizontal gene transfer. Recently, the
development of ARGai 2.0, a TL based-model with remarkable
efficiency, allowed the detection of AR genes and resistant strains
in the same microorganism, through the analysis of high-
throughput (NGS) GE data (Nayak et al., 2025). On the other
hand, Singh and Sodhi (Singh and Sodhi, 2024) used a ML
model to improve the selection of the most appropriate

treatment, based on the interaction of antibiotic-resistant
compounds with target proteins.

Despite the alert and efforts by the scientific community,
advances in the development of new treatments or immunization
strategies have not been sufficient to combat AR effectively.
Considering the critical situation of AR, the urgent need for
rapid development of therapeutic strategies, the importance of
updated SR for decision-making in clinical areas, and the
growing use of LLMs in writing SRs, the aim of this study is
twofold. First, to compare the state-of-the-art of AR and
treatment, before and after the 2017 WHO alert on selected
priority bacterial pathogens, considered them as indicators, as
well as others of current clinical importance. Second, to develop
and test an LLM tool to optimize the preparation of comprehensive
reviews (Figure 1).

2 Materials and methods

2.1 Screening strategy

We developed a strategy and performed a search of the literature
in PubMed from 2012 to 2022, in order to cover the periods
corresponding to 5 years before and after the 2017 WHO alert
(World Health Organization, 2017).

The application of Boolean operators (AND, OR, NOT) was
utilized to refine the search results. Therefore, the following search
terms were utilised: The following search terms should be used to
identify relevant literature on the subject: (Therapeutic updates OR
Therapeutic innovation OR Drug development OR Antibiotic
resistance OR Antimicrobial development) AND (<Bacteria name>).

FIGURE 1
Schematic representation of the results. Acinetobacter baumannii, Neisseria gonorrhoeae, and Shigella spp., listed as Critical, High and Medium
priority in the WHO alert, analyzed with LLMzCor, and the trends in number of original papers, publications on multiresistant bacteria strains, new
treatments and new strategies of immunizations against the selected bacteria.
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In order to generate and validate the accuracy of the LLM (see
Section 2.3), and to include a manageable number of articles for
human reviewers, while achieving an acceptable n, we selected one
bacterium from each category of the WHO alert list, and its
mortality, treatability and resistance to certain types of antibiotics
were considered (World Health Organization, 2017). The remaining
three non-listed bacteria, which are of regional and global
importance, were also included, according to their transmission
routes (vectors, sexual transmission, and fecal-oral route). The <
Bacteria name > term corresponds to one of the following
pathogens, namely, Priority 1: CRITICAL A. baumannii; Priority
2: HIGH N. gonorrhoeae; Priority 3: MEDIUM Shigella spp.; and the
three bacteria not listed in the alert: Rickettsia spp., Chlamydia
trachomatis, and Clostridium difficile.

2.2 Selection criteria

We included studies that met the following criteria, keeping in
mind the aim of this article. These articles were considered for
inclusion in the review: 1) original research articles published within
5 years before or after the alert, that included the names of the
bacteria mentioned above; 2) in vitro and in vivo preclinical assays;
3) ex-vivo studies using clinical samples; 4) studies on hospital
environmental samples and biomedical devices; 5) epidemiological
studies where a resistant strain was characterized and reported; 6)
phylogenetic and clonal studies involving resistant bacteria leading
to characterization of antimicrobial-resistant (AR) strains and/or
the identification of new treatments.

On the other hand, the exclusion criteria included reviews, meta-
analyses, editorial, comments, opinions, and letters to the editor that
did not report antimicrobial resistance (AR).

2.3 Database construction

To carry out this project, freely accessible data from PubMed
were used. The first classification was according to their publication
date, dividing them into pre-alert 2 (25/02/2012–25/02/2017) and
post-alert (26/02/2017–25/02/2022). A sample of the database n =
1800, was used to test set analysis (see section 2.5). Titles and
Abstracts were screened independently by two reviewers against
predefined eligibility criteria. Discrepancies between reviewers were
resolved through discussion or consultation with a third reviewer. In
order to validate the accuracy of the model as a classifier, the
abstracts were pre-validated to ensure they met the minimum
requirements for analysis by the language model, including the
presence of an abstract. Records containing special characters within
the abstract were preprocessed to avoid misinterpretation by the
LLM. This preprocessing involved converting the content into
standardized plain text, thereby enabling more effective input
into the model.

Subsequent automated analysis by the LLM, the output was
post-processed to transform the information into one of the
following classification categories: 1) Reporting of resistant
strains, 2) New treatments, 3) Immunization, and 4) None,
where Category 4, contains any report that does not fall into
other categories. For Category 2, New treatments, Sub-categories

mentioned in the Introduction were also included: a) Natural
products, b) Peptides, c) Designer drugs, d) Antibodies, e)
Bacteriophages, f) Antivirulence strategies, and g) New
combination of antibiotics, as well as h) Off-label (use), or i)
Physicochemical treatment. These two subcategories were defined
as: h) use of a pharmaceutical agent for an unapproved indication or
in an unapproved age group or at a different dose, duration, or route
of administration (Gazarian et al., 2006) and i) use of
physicochemical agents in antimicrobial therapy.

2.4 Application of Large Language Models

For the classification task, we employed the Mixtral 8 × 7B
model (Jiang et al., 2024), a pre-trained Sparse Mixture of Experts
(MoE) architecture developed by Mistral AI. This model was
selected due to its superior inference speed, open-source
availability, and high accuracy scores reported in benchmark
evaluations. These characteristics made Mixtral particularly
suitable for processing large volumes of text efficiently while
maintaining reliable classification performance.

2.5 Performance evaluation

To assess the model’s effectiveness, we utilized a test dataset (n =
1800), manually labeled by members of the research group
(reviewers), serving as the ground truth for classification
categories. While Recall was selected as the primary evaluation
metric—given that missing relevant articles (false negatives) was
considered more critical than including irrelevant ones (false
positives)—Precision was also reported to reflect the model’s
ability to correctly identify relevant categories without increasing
the generation of false positives.

Additionally, F1-score was calculated to provide a balanced view
of both Precision and Recall. The classification outputs of the
Mixtral model were directly compared to the human expert
annotations to measure concordance and identify discrepancies
through an Accuracy Score, calculated as the number of correct
predictions over the total number of evaluated samples.

To further support this evaluation, Class-specific Confusion
Matrices were generated, allowing for detailed analysis of error
patterns and identification of categories with a higher likelihood
of misclassification. This combination of metrics and visualizations
facilitated an integrated assessment of the classification system’s
performance.

Furthermore, for Category 4 (None), two authors independently
reviewed 20% of the abstracts to assess the reliability of the LLMzCor
model in detecting non-relevant reports.

2.6 Quantification of the impact of the
2017 WHO alert

Data analysis was developed by year, considering the two
periods, pre- and post-alert. First, total publications per
bacterium were determined by year and by period. Additionally,
their proportions were calculated to determine the predominance of
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each species reported in the publications by year and period. Then,
to eliminate the influence of the increase in general publications
about the bacteria, the number of articles was normalized by
dividing it by the total number of articles per year or period

(pre- and post-alert), per bacterium. This procedure was applied
to determine the proportions of publications for each category [1)
Reporting of resistant strains; 2) New treatments; 3) Immunization],
individualized by bacteria, related to total publications by year, and

FIGURE 2
Flowchart of automatic classification of LLMzCor.

FIGURE 3
Recall-based confusion matrix comparing AI-predicted and human-assigned categories. Values are row-normalized and represent the proportion
of true positives over all actual instances per class. This metric reflects the model’s sensitivity, indicating how well the LLM detects relevant articles within
each category.

Frontiers in Pharmacology frontiersin.org05

Robledo Almonacid et al. 10.3389/fphar.2025.1633382

mailto:Image of FPHAR_fphar-2025-1633382_wc_f2|tif
mailto:Image of FPHAR_fphar-2025-1633382_wc_f3|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1633382


regarding total publications of each period (see Formulas 1–8 in
Supplementary Material). When comparing two percentages
belonging to pre- and post-alert periods, a proportion difference
with a confidence interval of 95%was estimated through a Z-test and
considering p < 0.05 as statistically significant. Proportions of the
subcategories for New treatments were also calculated. Epidat
4.2 was used for these comparisons.

3 Results

3.1 Search and screening

The search was conducted between May 2024 and May 2025. A
total of 40,308 articles were identified with no duplicates. After
depuration according to inclusion/exclusion criteria, 34,252 titles
and abstracts remained. Finally, after a second round of revision,
29,231 articles were included in the LLMzCor. This flowchart is
shown in Figure 2.

3.2 LLMzCor performance

Validation of LLMzCor demonstrated a good performance.
Adjusting the inclusion criteria recognized as “true” after a
second round of review, the score was 0.83 (number of corrected
classifications/total of evaluated publications).

Besides, based on the model’s predictions and the corresponding
human classifications, a confusion matrix was constructed to
analyze the agreement and discrepancies between both sources of
annotation. Two distinct normalization strategies were applied to

the confusion matrix in order to facilitate the interpretation of
classification performance at the class level.

As illustrated in Figure 3, the matrix values were normalized by
row, dividing each cell by the total number of instances in the
corresponding true category (as defined by human annotation).
Each cell thus represents the proportion of true examples of a given
class that were classified into each predicted category by the model.
The diagonal elements correspond to the recall for each class,
indicating the model’s ability to correctly identify true instances
of that category.

Column-normalized matrix (Precision-oriented): the matrix
values are normalized by column, dividing each cell by the total
number of instances predicted by the model for that specific
category, as shown in Figure 4. Each cell in the matrix represents
the proportion of model-predicted examples that actually belonged
to the true category assigned by the human reviewers. The diagonal
values in this matrix reflect the precision of each class, indicating
how reliable the model’s positive predictions were for each category.

In Table 1, recall scores showed similar values for categories 1, 2,
and 4. In these categories, the model successfully identified
approximately 50% of the true cases, as established by the human
annotations. In contrast, category 3 exhibited higher recall,
indicating that the model correctly identified a greater proportion
of the instances assigned to this category by the human reviewer.
Precision scores showed that for the first three categories, when the
model predicted a specific category, the classification was largely
consistent with the human annotation. A reduction in precision was
noted in category 4, primarily due to an increase in false positives
(FP). In these cases, the model frequently assigned category 4, while
the human annotator categorized the same instances under one of
the remaining three categories. Category 3 demonstrated the highest

FIGURE 4
Precision-based confusion matrix comparing AI-predicted and human-assigned categories. Values are column-normalized and represent the
proportion of true positives over all predictions made by the LLM for each class. This metric indicates the reliability of the model’s positive classifications.
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F1 score (Figure 5) among all categories, reflecting a more balanced
performance in terms of both precision and recall.

A quality control was performed on a sample of this category
(20% of the articles of every species) by two reviewers, who
concluded that this classification was run in accordance with the
specified prompts.

From the total articles analyzed by LLMzCor, 55.9% were
classified into the 4th category (None). This category was also
submitted to a quality control on a sample (20%) by reviewers,
with remarkable results. Articles whose aim was on epidemiological
or molecular biology studies, new diagnostic techniques,
comorbidity description, after-effects of infection, hospital
pharmacotherapy protocols (except for those where a new
treatment was used), among others, fall into this category. Some
justifications formulated by LLMzCor are shown as examples, for
Acinetobacter baumannii, N. gonorrhoeae, and Shigella spp,
respectively:

“The paper discusses the genomic sequence analysis of
Acinetobacter baumannii, revealing a putative Acid
Phosphatase (AcpA). The recombinant protein was expressed

in E. coli, and its properties were studied, but no new treatment,
multi-resistant bacterial strain, or immunization process was
discovered or discussed.” (Smiley-Moreno et al., 2021).

“The paper discusses the purification, enzymatic degradation,
and separation of peptidoglycan fragments by HPLC, and
preparation of samples for mass spectrometry identification,
without mentioning new treatments, multi-resistant bacterial
strains, or immunization.” (Schaub and Dillard, 2019).

“The paper discusses a rapid, convenient, point-of-care, and
accurate identification method for virulent Shigella sonnei, but it
does not involve new treatments, immunization, or
multiresistant bacteria strains.” (Wang et al., 2022).

3.3 Quantification of the effect of the WHO
alert on the scientific research

In order to evaluate the effect of the alert on the scientific
community, scientific publications of six selected bacteria were used

TABLE 1 Summary of the results of the evaluation metrics, Recall, Precision, and F1 score per category.

Category Recall (%) Precision (%) F1 score (%)

1) Reporting of resistant strains 59 74 65

2) New treatments 51 62 56

3) Immunization 75 69 72

4) None 56 25 35

FIGURE 5
F1-score confusion matrix combining precision and recall. Values reflect the harmonic mean of precision and recall for each category, offering a
balanced metric to evaluate overall classification performance. Higher scores suggest more consistent agreement between the LLM and
human reviewers.
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as a parameter for the evaluation, three of them belonging to the list,
with one from each priority, A. baumannii, N. gonorrhoeae, and
Shigella spp., and three used as an external control, Rickettsia spp., C.
trachomatis, and C. difficile.

3.3.1 Increase in the original publication number
In the context of the present study, a total of 10,047 articles

reported on C. difficile, which had the highest publication trend,
followed by 8,106 articles related to A. baumannii, while
3,551 articles for N. gonorrhoeae position it as the least reported
in the 10-year window. A comparative analysis of the extant

literature reveals that the total publications pertaining to the
remaining bacteria, Shigella spp. and C. trachomatis, exhibited a
high degree of similarity. However, a slight increase in the number of
publications concerning Rickettsia spp. was observed.

The first measured item of interest was the total number of
original papers published in the time frame, encompassing 5 years
before and 5 years after the alert was issued. Figure 6 shows the
comparison of the total number of papers for individual bacterium
within both periods. An increase was detected in all the bacteria
reports analyzed, and when the percentage increase was analyzed, A.
baumannii tops the list (56.5%), followed by Shigella spp. (39.8%)

FIGURE 6
Evolution of the total number of original papers for each bacteria pre- and post-alert. Considering February 2017 as the reference point, when the
alert was issued, a time frame of 5 years before (pre-alert) and 5 years after (post-alert) was analyzed.

FIGURE 7
Evolution of the total number of original papers for each bacteria. Ten-year progression of the number of publications about resistance topics on
selected bacteria, listed and no-listed in 2017 WHO alert. The red dotted perpendicular line indicates the WHO alarm emission. The continuous line
indicates the bacteria was listed in the alert, the dotted line is for bacteria not listed.
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and N. gonorrhoeae (38.3%), while Rickettsia spp. presented a
moderate rise (27.4%), and C. trachomatis (13.1%) and C. difficile
(8.7%) exhibited the lowest (see Formula 1,
Supplementary Material).

From a different perspective, when the volume of publications
for species was analyzed, C. difficile had the highest rate and A.
baumannii claimed the second place, in both 5-year windows.When
comparing pre- and post-alert periods, the C. difficile rate decreased
[from 29.1% to 24.7%, (0.035, 0.053; Z = 9.61; p < 0.0001] and A.
baumannii increased from [19.1%–23.3%; (−0.051, −0.034;
Z = −9.95; p < 0.0001)]. The remaining species presented similar
but small proportions, hence, they did not stand out, even though for
most of them statistically significant differences were evident
between one period and another (See Formula 2 and Table 1,
Supplementary Material).

Furthermore, the number of publications per year is
discriminated against in order to detect trends over time. In
Figure 7, a generalised increase in the publications for all six
bacteria examined is evident, with a slight diminished tendency
starting in 2020 for some species. When analyzing each bacterium
individually, a consistent increase in the number of publications was
found year-on-year.

3.3.2 Antibiotic resistance (impact on the
frequency of new resistant strains description)

The second point of the current research was to evaluate the
report of strains resistant to standard-of-care treatment. In this
regard, publications were categorised by year and by period. As
demonstrated in Figure 8, the ratio of publications pertaining to
resistant bacterial strains to the total number of publications per
annum is indicated (see Formula 3, Supplementary Material). A
slight rise in the reports of resistant strains was noted over time for

all the microorganisms studied, except for Shigella spp., which
presented a decreased trend, and C. difficile, whose reports
exhibited low percentages and, at first glance, barely changed
over the whole period studied. A. baumannii had the highest
percentage of publications related to the total by year, slowly
decreasing towards the end of the period. In contrast, Rickettsia
spp. and C. trachomatis had the lowest rates. For all the remaining
species, reports of resistant strains ranged between 7% and 20% over
the 10-year period.

The subsequent analysis concentrated on the periods both prior to
and following the alert. Figure 9 presents the rate of resistant bacterial
strains reported by period (see Formula 4, Supplementary Material).
Only C. trachomatis percentage differences between pre- and post-
alert periods were statistically significant: 0.77% [-0.014, −0.002;
Z = −2.454] p < 0.005. All the remaining bacteria rate differences
were not statistically significant (pre- and post-alert period rates are
shown in parenthesis): A. baumannii exhibited the highest
percentages (28.8%–30%) which is consistent with the previous
result, and similar observation holds for N. gonorrhoeae (18.3%–
19%), Shigella spp (12.6%–11.5%) and C. difficile (8%–7.6%). Low
values were found for Rickettsia spp. and C. trachomatis, whose
percentage changes were not significant.

3.3.3 Therapeutic strategies (positive impact on the
new treatment discovery after the alert)

The primary objective of the alert was to encourage the scientific
community to conduct research and identify novel treatments for
these bacteria.

As illustrated in Figure 10, the publication rate of A. baumannii
slightly decreased, with a turning point at the beginning of the post-
alert period, and subsequently largely recovered (see Formula 5,
SupplementaryMaterial). Furthermore, an increase in the reports on

FIGURE 8
Ratio of number of publications on Resistance bacteria strains and total publications per year. The graph shows the number of publications focusing
on the new resistant strains described divided for the total number of papers X 100, for each bacteria and year of publication. The red dotted
perpendicular line indicates the WHO alarm emission. The continuous line indicates the bacteria was listed in the alert, the dotted line is for bacteria
not listed.
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new treatments for Shigella spp. and N. gonorrhoeae was observed
towards the end of the study period, with this trend being more
marked in the former. Moreover, the evolution over time of new
treatments for unlisted bacteria did not show significant changes.
Hierarchical clustering analysis revealed that the highest levels were
found for C. difficile, followed by C. trachomatis, with Rickettsia
spp. in last place.

As demonstrated in Figure 11, a by-period analysis revealed a
notable increase in reports concerning new treatments for A.
baumannii, Shigella spp. and N. gonorrhoeae in the post-alert period
(see Formula 6, Supplementary Material). This finding is corroborated

by the statistically significant differences observed.: 10.62%
[−0.125, −0.088; Z = −10.87] p < 0.0001; 5.41% [−0.071, −0.37;
Z = −5.794] p < 0.0001, and 2.87% [−0.047, −0.011; Z = −3.05] p <
0.005, respectively. Fortunately, the C. difficile percentage also raised,
3.64% [−0.052, −0.021; Z = −4,616] p < 0.0001.

As a preliminary analysis of the type of treatment, we performed
a deeper classification according to the sub-categories mentioned in
the Introduction. Figure 12 shows the distribution of new treatment
publications. Overall, the main subcategory obtained was g) New
combination of antibiotics (31.3%), followed by i) Physicochemical
treatments (17.6%); f) Antivirulence strategies (14.6%); b) Peptides

FIGURE 9
Inter-period percentage of change in publications on Resistant bacteria strains. The difference pre and post alert was calculated for each bacteria.
From left to right, listed in the alert as Critical priority, High priority or Medium priority, plus 3 bacteria non listed in the alert. Blue bars = 2012–2016;
orange bars = 2017–2021; green bars = percentage difference; *p < 0.05.

FIGURE 10
Ratio of number of publications on New treatments and total publications per year. The graph shows the number of publications focusing on the
new treatments divided for the total number of papers X 100, for each bacteria and year of publication. The red dotted perpendicular line indicates the
WHO alarm emission. The continuous line indicate the bacteria was listed in the alert, the dotted line is for bacteria not listed.
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(12.4%). Surprisingly, c) Designer drugs (8.9%) and e)
Bacteriophages (6.7%) were in 5th and 6th place, respectively,
surpassing h) Off-label (4.4%) and a) Natural Products (3.5%),
while d) Antibodies (0.5%) had the lowest rate. For subcategory
g), reviewing of a sample (20%) for each bacterium suggested the use
of clinically known antimicrobial agents in combination in order to
apply a synergistic strategy against a resistant strain or reduce the
doses for a safer therapy. In subcategory i), gases, UV-light, or
oxidant agents, among others, are proposed as potential therapies.

3.3.4 Immunization: the vaccine development at
a plateau

Immunization strategies are sought after due to their reduced
potential for the development of resistance when compared with

bacteria. Consequently, it was imperative to be cognizant of the
advances pertaining to immunizations in the bacteria under scrutiny.

Figure 13 shows the percentage of reports on new immunization
therapies across the 10-year period (see Formula 7, Supplementary
Material). Throughout the duration of the study, low levels were
consistently observed, with these levels remaining below 10% for
each bacterial strain. New immunization strategies were observed
for Shigella spp. and C. difficile were the highest, followed by C.
trachomatis. For A. baumannii, meanwhile, reports on these
strategies were rarely published, standing at minimal rates,
although they increased toward the end of the post-alert period,
as did rates for N. gonorrhoeae.

Complementary, Figure 14 presents the same reports
considering pre- and post-alert periods (see Formula 8,

FIGURE 11
Inter-period percentage of change in publications on New treatments against selected bacteria. The difference pre- and post-alert was calculated
for each bacteria. From left to right, listed in the alert as critical priority, high priority or medium priority, plus 3 bacteria non listed in the alert. Blue bars =
2012–2016; orange bars = 2017–2021; green bars = percentage difference; **p < 0.005; ***p < 0.0001.

FIGURE 12
Distribution of subcategories on New treatments publications for all bacteria studied, expressed as percentages.
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Supplementary Material). Only for N. gonorrhoeae and A.
baumannii significant changes were observed, 1.97%
[-0.032, −0.007; Z = −3.024] p < 0.005, and 0.58%
[-0.011, −0.001; Z = −2.268] p < 0.05, respectively. The rates of
the remaining microorganisms remained unchanged, according to
the statistical estimates made (pre- and post-alert rates are shown in
parenthesis): Shigella spp. (7.95%–7.02%); Rickettsia spp. (3.20%–

2.53%); C. trachomatis (6.34%–5.44%) and C. difficile
(2.70%–2.75%).

4 Discussion

In this work, the implementation of the AI assistant significantly
streamlined the classification process, enabling a more efficient
review of the literature, with a remarkable score (0.83), taking
into account that a perfect match between the automated tool
and the manual researcher review is ambitious, since human
criteria may still have discrepancies (Delgado-Chaves et al.,
2025). This performance was possible by means of a redefinition

FIGURE 13
Ratio of number of publications on new strategies of Immunizations and total publications per year. The graph shows the number of publications
focusing on the new immunization strategies divided for the total number of papers X 100, for each bacteria and year of publication. The red dotted
perpendicular line indicates the WHO alarm emission. The continuous line indicates the bacteria was listed in the alert, the dotted line is for bacteria
not listed.

FIGURE 14
Inter-period percentage of change in publications on new Immunizations strategies against selected bacteria. The difference pre- and post-alert
was calculated for each bacteria. From left to right, listed in the alert as critical priority, high priority or medium priority, plus 3 bacteria non listed in the
alert. Blue bars = 2012–2016; orange bars = 2017–2021; green bars = percentage difference; *p < 0.05.
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of the eligibility criteria; therefore, a constant review of the
parameters (prompts) required by the LLM is desirable.
LLMzCor demonstrated a robust and consistent performance
across Precision, Recall and F1 scores. The discrepancies
observed between the model’s predictions and the categories
assigned by human reviewers do not necessarily indicate poor
system performance. In certain cases, the articles exhibit features
that hinder unambiguous classification, even for expert human
evaluators. In such situations, the model may capture subtle
patterns or contextual cues that allow for a more nuanced
categorization—one that, although differing from human
annotation, may be equally valid or even more appropriate. To
improve the quality of classifications generated by LLMzCor, several
strategies could be explored. One such approach involves the use of
multiple LLMs rather than a single model, implementing a voting-
based decision system. This ensemble strategy introduces multiple
“voters” into the classification process, increasing the diversity of
perspectives on each case. As a result, individual variability may be
reduced, enhancing the robustness and Precision of
classification decisions.

Beyond technical optimization, this study aligns with a broader
transition in the way research is conducted. The current challenge is
no longer the lack of information, but rather the ability to navigate,
process, and synthesize large volumes of scientific data efficiently.
LLMs enable direct interaction with textual content, facilitating the
detection of informational patterns, identification of evidence gaps,
and generation of novel hypotheses in reduced timeframes. The
rapid improvement of LLM performance suggests that repeating this
same study in the near future would likely yield even better results.
This ongoing advancement enables the development of dynamic,
adaptive systems capable not only of reading on behalf of
researchers, but also of supporting strategic reasoning and
evidence-based scientific decision-making.

Building on these insights, and in alignment with current global
health priorities, the following analysis focuses on antibiotic
resistance alert issued by the WHO in 2017 as a framework to
explore publication trends and research efforts over the last decade.
This alert on 12 bacteria that urgently require antibiotic
development due to their increased resistance is aimed at
researchers and pharmaceutical companies to incentivize the
R&D of new antibacterial agents, providing clear directions on
which bacteria must be prioritized.

In the present study, a selection of three bacteria from each of the
WHO alert’s priority categories was made, in addition to three non-
listed pathogens that are of clinical importance. A comprehensive
analysis of the total publications from 2012 to 2022 reveals that C.
difficile had the leading role (10,047 articles). It is a spore-forming,
obligate anaerobic Gram-positive bacilli bacterium, having
nosocomial prevalence. It can colonize the gastrointestinal tract
and the disruption of gut microbiota by antibiotic therapy facilitates
its invasion, which is the most common clinical manifestation of
diarrhea, affecting hospitalized patients. Probably due to this deep
concern, numerous reports were identified and gained
predominance on total publications per period (29.1% and
24.7%, Supplementary Material, Table 2). On the other hand, A.
baumannii is an extracellular, strictly aerobic, nonmotile, Gram-
negative coccobacillus. Even when it has been implicated in a wide
spectrum of infections, the most prevalent is nosocomial. The

principal site of colonization is the respiratory tract, becoming
dangerous in patients in intensive care with mechanical
ventilation. Indeed, the second place of total reports was for A.
baumannii, belonging to Critical priority (8,106 articles). This is also
stated by its importance on total publications per period (19.1% and
23.3%, Supplementary Material, Table 2). At the other extreme,
3,551 articles were found for N. gonorrhoeae (High priority
category), a cocci-like morphology, Gram-negative, strictly
aerobic, and facultatively intracellular microorganism. It can
colonize the urethra, endocervix, rectum, pharynx, and anus.
Being the causal agent of gonorrhea, the second most prevalent
sexually transmitted infection in the world, it can be worrying that a
lower number of articles were detected. When publications for each
bacterium were analyzed by period (Figure 6), all of them increased,
mainly A. baumannii (+56.3%), N. gonorrhoeae (+38.3%), and
Shigella spp. (+39.8%). These encouraging facts respond to the
WHO alert, and mean that, at least, general publications on the
three listed bacteria increased from pre-to post-alert period, even
when they present a low number of publications in total analyzed by
LLMzCor. That applies to N. gonorrhoeae and Shigella spp. The
latter are nonmotile intracellular Gram-negative rods. They are the
causal agent of shigellosis, an invasive condition that affects the
colon and rectum, producing epithelial invasion with significant
fluid and electrolyte losses. Regarding the three non-listed bacteria,
they were the ones whose reports increased the least. This can be
interpreted as a focusing of investigations on the pathogens alerted
by the WHO. From them, Rickettsia spp. exhibited a moderate rise
(+27.4%). They are Gram-negative obligate intracellular bacteria in
vertebrates, usually mammals, and are also associated with
bloodsucking arthropods such as fleas, lice, or ticks. The most
important diseases they cause in humans are typhus fever,
spotted fever rickettsiosis (also called Rocky Mountain spotted
fever), and ehrlichiosis. These local etiological characteristics
perhaps make them less attractive as an aim of study. Secondly,
C. trachomatis raised only 13.1%. It is also a Gram-negative, obligate
intracellular bacterium that is restricted to humans. It is the major
causative agent of bacterial sexually transmitted diseases and
preventable blindness worldwide. Non-treated infections can
result in urethritis, cervicitis, epididymitis to trachoma,
lymphogranuloma venereum, pelvic inflammatory disease, tubal
obstruction, ectopic pregnancy, and infertility. Clostridium
difficile, meanwhile, showed only an 8% increase even though its
reports were numerous. Regarding the analysis by year, the total
number of original papers for all bacteria showed a constant growth
over the years, with a higher increment in the case of A. baumannii
(Figure 7). The remaining five bacteria showed a deceleration of the
growth or a slight decrease in the last year of the post-alert period.
The starting point of the decrease for some bacteria was in 2020,
consistent with the advent of the COVID-19 pandemic, when
numerous scientific groups changed their main focus of research
towards SARS-CoV-2, which is our main hypothesis to explain
this tendency.

Considering the percentage of papers on the description of New
Resistant Strains, our results showed a very small increase over the
10-year period (Figure 8), for A. baumannii, while bacteria such as
Neisseria gonorrhoeae (High Priority) and Shigella spp. (Medium
Priority) exhibited an almost constant percentage (between 10% and
20%), indicating the regular finding of new strains showing
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resistance to the regular treatments. Clostridium difficile reports
exhibited low percentages with no changes over time, and this fact
contrasts with the numerous total publications counted for this
bacterium. A possible explanation is that most reports focused
mainly on epidemiological data and topics other than resistant
strains. It is noteworthy that differences in pre- and post-alert
(Figure 9) strengthen these findings, since Acinetobacter
baumannii had a marked increase in the total number of original
papers in the post-alert period, which diminished the normalized
differences. This is highly relevant since it exhibited multiple
mechanisms of resistance, including carbapenemases and beta-
lactamases production, overexpression of efflux pumps, loss or
alteration of porins, and mutations in gyrase/topoisomerase.
These accumulated mechanisms make many strains of A.
baumannii Multi-Drug Resistant (MDR) or Extensively Drug-
Resistant (XDR) (Vrancianu et al., 2020), therefore, our results
are according to its resistance rate profile and are encouraging, as
it belongs to the Critical priority group. Besides, no differences were
found for N. gonorrhoeae, which has developed a wide variety of
resistance mechanisms that make treatment difficult, and the same is
true for Shigella spp., for instance, beta-lactamases, efflux pumps,
and mutations in genes related to key proteins for antibiotic binding,
among others., The not-listed bacteria, acting like external control,
showed no considerable changes, which makes sense due to their
scarcely resistant behaviour. Clostridium difficile and Rickettsia
spp. statuses are consistent with their antibiotic sensitivity profile.
Clostridium difficile has the ability to sporulate and form biofilms,
allowing it to evade elimination and cause recurrences, although this
is not a classic genetic resistance mechanism. Rickettsia spp. lack of
resistance, which is attributed to its obligate intracellular cycle and
absence of significant horizontal gene transfer, and remains fully
susceptible. Finally, C. trachomatis presented a small significant
difference, but it has not shown much stable clinical resistance to
antibiotics. It can also form an intracellular “persistence” state where
it tolerates antibiotics without genetic changes.

When the New Treatments were analyzed by year, A. baumannii
rates showed a decrease followed by an increase, and also an increase
in the reports on new treatments for Shigella spp. and N.
gonorrhoeae was observed at the end of the 10 years (Figure 10).
This is encouraging for the three bacteria mentioned according to
their category in the alert (A. baumannii, Critical; N. gonorrhoeae,
High; Shigella spp., Medium), and it can be interpreted as an intent
to respond to the WHO alert.

On the other hand, the unlisted bacteria did not show significant
changes, which could mean that in recent years, research into
potential therapies has focused on the bacteria mentioned by the
WHO, although high rates of reports were detected for C. difficile.
The analysis by period supports these findings, since A. baumannii,
N. gonorrhoeae, Shigella spp. and also C. difficile exhibited significant
differences, with increased rates in the post-alert periods (Figure 11).
This is important to A. baumannii since its resistance has increased,
particularly to beta-lactams, aminoglycosides, fluoroquinolones, and
most recently to carbapenems. For N. gonorrhea, there are few
available antimicrobial treatment options, based on ceftriaxone and
azithromycin, and Shigella strains have high resistance levels to
ampicillin, trimethoprim-sulfamethoxazole, and fluoroquinolones;
hence, these positive results show a promising breakthrough in the
fight against antibiotic resistance (Bennett et al., 2020). Also, for C.

difficile, due to the clinical relevance of this microorganism. It
developed resistance to fluoroquinolones due to a point mutation
that characterized a hypervirulent strain that caused severe
outbreaks in the 2000s. On the contrary, investigations on new
therapies for C. trachomatis and Rickettsia spp. did not suffer any
change, and this is a cause for concern, especially for the first species,
given its high re-infection rate (Xu et al., 2023) and the health
problems it represents due to mother-to-child transmission, which
leads to the search for safer treatments during pregnancy. As it was
described previously, Rickettsia spp. have not shown significant
resistance to doxycycline (the treatment of choice) and remain
fully susceptible. However, sulfonamides can worsen the infection
by increasing rickettsial proliferation (a paradoxical mechanism). In
this area, it is important to point out that the development of new
treatments is usually more time-consuming than the finding of new
resistant strains, and the whole effect of the alert on the new
treatments could be better appreciated in a 10-year window.

On the type of treatments, the highest percentage was New
combinations of antibiotics (Figure 12), which is not surprising,
given that one of the most widely used strategies in the clinical area is
to administer more than one antibiotic to enhance or synergize the
effects against resistant microorganisms. Physicochemical
treatments appear in second place, and after a review, we
hypothesize that LLMzCor, included in this category also
combines therapies, which may belong to more than one
subcategory, i.e., nanoparticles of natural products activated by
light. In this sense, an improved performance can be obtained
after reviewing subcategory classifications by redefining the
prompt. Antivirulence strategies (third place) emerge as a
promising alternative to reduce the virulence instead of killing
the pathogen, which is desirable to decrease mortality rates.
Peptides are prevailing over Designer drugs and Bacteriophages;
however, the latter therapeutic alternative presents encouraging
results. Even though it does not stand out among the most
reported therapies, the historical importance of Natural Products,
specifically phytochemicals, as prototypes for Designer drugs must
be highlighted, as well as the potential of botanicals -a complex
matrix composed of several molecules-for treatment of
microorganism infections, since their components can synergize
and exert enhanced effects. All these results showcase a diverse
approach to combating antibiotic resistance.

Prevention can be a goal in the fight to stop the spread of
infectious diseases. Therefore, the last point of our analysis was the
state of advance in Immunization. In all the bacteria analyzed, the
number of New immunization strategies or proposals is low, in
comparison with the total number of papers published, and they
remained below 10%. The highest rates over the 10 years were
determined for Shigella spp., C. difficile and C. trachomatis, and this
slightly greater interest in developing immunizations could be
explained by their transmission routes and the impact they have
on health The low percentages of remaining bacteria invite us to
reflect on the promotion and exploration of this area of research
(Figure 13). When differences from pre-to post-alert period were
examined, only N. gonorrhoeae and A. baumannii exhibited positive
changes. Fortunately, it means a small growing trend for both in the
post-alert period. The percentages of Shigella spp., C. difficile and C.
trachomatis, although they were the most prominent, remained
unchanged (Figure 14). Nevertheless, even when two WHO listed
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bacteria presented statistically significant differences, there is no
clear and strong tendency over the years nor between periods pre-
and post-alert, with immunization being the weakest area in the fight
against the untreatable bacteria. Probable causes of this lack of new
candidates are the high multiplicity of serotypes, the genetic
variability, the different strategies of evading the immune system,
and the weak or short-lived immune response generated. As with
treatments, it takes between 10 and 20 years to develop new vaccines.
Besides, there is a lack of adequate methods to measure cost-
effectiveness in potential vaccines, since their impact on
resistance is not usually evaluated, and their estimated value in
this matter is lower (Micoli et al., 2021).

5 Conclusion, limitations and future
directions

Our work provides a perspective on the advances published on
certain bacteria, some included in the alert issued by the WHO, and
others not included but clinically relevant, while also providing
indicators on the impact of this alert on research for the scientific
community. While at first glance, the total number of publications
for all bacteria increased after the 2017 alert, primarily for the listed
bacteria, a selective analysis of reports of resistant strains reveals
that, fortunately, there was no increase in the published rate for these
strains since they have been reported regularly. However, when the
relative data on innovative therapies in any phase of development
are analyzed, significant but moderate increases were observed. The
most notable is the new combination of already used antibiotics,
which is a reasonable strategy given their known characteristics
(knowledge of their safety profile and mechanism of action, already
approved, commercial availability, among others) and the time
required to develop new therapies. Even when these findings
offer hope, it would be desirable to increase research into other
types of potential new treatments so that more become approved
therapies in the future. This can be extended to new immunization
approaches, since the results obtained presented a still
underdeveloped scenario, probably caused by the inherent
characteristics of each microorganism, the long-time development
for their approval and commercialization (which could be
accelerated as happened with SARS-CoV-2 vaccines) and the low
importance given to them in the face of reducing the incidence of
infections with the consequent reduction in the use of antibiotics,
and consequently, of AR, among others factors. Besides the
education of the society and the alert of the danger represented
by the listed bacteria, immunization plays an important role.

On the other hand, we have developed LLMzCor, an AI-based
tool to analyse and follow the advances in scientific publications.
Complementarily, the AI assistant proved to be a valuable tool for
enhancing the efficiency of SRs, and allows automation of analysis of
a considerable amount of data for decision-making. Its
implementation can shift the focus of bibliographic reviews
efficiently and extract valuable insights that can guide future
research directions. Nevertheless, some limitations of this study
outside the model are the inclusion of articles only in English and
those reported in PubMed. Regarding the model, one of the main
limitations that remain in the use of language models such as
LLMzCor is the generation of inaccurate or unverified content,

commonly referred to as hallucinations by the AI. These errors can
occur even when the model is trained on large volumes of data, as its
ability to generate coherent text is not always matched by factual
accuracy. This risk increases when working with scientific literature
that is incomplete, ambiguous, or poorly structured. Therefore,
expert human curation becomes essential—not only to validate
automated classifications but also to detect when the model’s
output lacks scientific rigor or is based on low-quality data.
Additionally, relying solely on abstracts as the source of
information limits the depth of analysis, since many experimental
details, results, and methodological limitations are only reported in
the full text. Future versions of the model could be integrated with
databases that provide automated access to full-text documents, with
systems capable of detecting when an abstract lacks sufficient
evidence for reliable classification, or integrating more robust
preprocessing methods, domain-specific fine-tuning, and hybrid
pipelines combining AI predictions with human validation.
Establishing minimum quality standards for scientific abstracts
could also enhance the reliability of LLM-assisted tools like
LLMzCor. In order to include and organize the increasing
literature for further analyses, the development of innovative
tools such as machine learning would be necessary. These
powerful tools could accelerate bibliographic research and give
scientists a broader view of published results. They could also be
used to improve and accelerate the application of the right treatment
for each bacterial infection.

In light of the limited progress in developing new treatments or
immunization strategies for the listed bacteria, we strongly advocate
a more assertive WHO alert accompanied by comprehensive
medium- and long-term action plans with robust support from
national governments and international institutions. These plans
should include increased funding for scientific research, incentives
for international collaboration, stronger awareness campaigns,
preparation of all personnel in the health system, and facilitation
of interaction between academia and the private sector.

In order to include and organize the increasing literature for
further analyses, the development of innovative tools such as ML
would be necessary. These powerful tools could accelerate
bibliographic research and give scientists a broader view of
published results. They could also be used to improve and
accelerate the application of the right treatment for each
bacterial infection.
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